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Abstract — The interaction of shear waves with a periodic array of rigid strips is investigated. Using
conventional analytical techniques the response of the strips is determined as a function of frequency.
High amplifications in the strip response are found to occur at particular frequencies. The effects
of spacing-to-width ratios and strip-to-matrix mass ratios on these amplifications are examined.

INTRODUCTION

Elastic wave interaction with an embedded rigid strip has been the topic of several studies
during the past two decades. The focus of these studies has been on determining the response
of the strip and/or the stress intensification at the ends of the strip as a function of frequency.
The interaction of P- and SV-waves with a semi-infinite, rigid strip was investigated by
Thau and Pao (1967). Using an exact analytical method, they computed the normal stresses
along the boundary of the strip as a function of normalized wavenumber. Their analysis,
however, is based on the assumption of smooth contact between the strip and the sur-
rounding medium. Scattering of P- and SH-waves by a perfectly bonded and finite rigid
strip was investigated subsequently by Jain and Kanwal (1972). Using an asymptotic
approximation, they obtained results for the scattered field valid for low-to-moderately low
frequencies. More recently, Mcade and Keer (1982) considered a problem similar to that
of Jain and Kanwal, although their study is restricted to SH-waves. Using an exact
approach, they obtained results valid out to moderately high frequencies. A number of
similar studies on the related problem of a rigid strip bonded to an elastic half space have
been reported (see e.g. Oien, 1971, where further references are given).

Here we consider an infinite, vertical row of equally spaced rigid strips in perfect
contact with a surrounding elastic medium. The array of strips is subjected to plane
harmonic S¥V-waves with propagation vector parallel to the strip orientation. Generalizing
the approach of Meade and Keer, we obtain the translation and rotation of the strip array
as a function of frequency.

FORMULATION

Figure I depicts the geometry of the array of strips. A statc of planc strain is assumed
in which («, v)c " are the displacements and (o,.0,.1) ¢ " arc the corresponding stress
components, where w is the frequency. Henceforth the time factor ¢ “ will be omitted. As
a consequence of the plane strain assumption, each strip has an infinite length normal to
the (x,y) planc. It is assumed that each strip is in perfect and complete contact with the
surrounding elastic medium. Moreover, we assume that the strips are sufficicntly thin, for
mathematicil purposcs, to be treated as linear inclusions. The elastic constants and mass
density of the medium are denoted as (4. 4) and p. respectively, and the mass per unit length
of the strips is denoted as p*.
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Fig. . Geometry of strip array and incident shear wave.

Let a plane harmonic shear wave of the form
v ko
=0, v, =¢ %, (1
where &, is the wave number, be incident on the array of strips. On account of symmetry
we may restrict attention to the region —h <y < h, — 0 < x < <. In the sequel the strip
situated at y = 0 will be referred to as the basic strip. [t is easily shown that the disturbance
(1) produces a jump in normal stress [o,] across the basic strip. The shear stress 7, however,

as well as the displacements are continuous across the strip. Further, it is clear by symmetry
that

u=0, y=0. (3)
Using these conditions in conjunction with the basic ficld equations, it can be shown that

the relationship between the vertical displacement v and the jump in normal stress (o]
across the basic strip is defined by the (singular) integral equation

dnkiv(x) = J [p()]K (s, x) ds,  |x] < | 4)
1

where
pls) = a,(s)/u

K(s,x) = K, (5, ¥)+ K(s, x) (5

Ki(s.x) = —imk HY" (K Dw))/Iwl =20k Y 20 Loy, e 7™ (6)

1

Kr(s.x) = —imkFHO (ke plw]) + imk o HY (K pw) /Dl #2000y S @750 (7N
i
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in which w = s—x. HY""(-) and H'"(-) are Hankel functions of the first kind,
ky=Kkry u,‘(i.+25. 2, = nnjh,
and
\//1:“1\'h- %, > Ky,
CarL = s 8
STk —i ki =2, 2, <krg. ®)
Following the approach adopted by Meade and Keer, the interaction problem is
decomposed into diffraction and radiation problems. This approach was introduced. appar-
ently. by Thau (1967). As indicated by Thau, the diffraction problem pertains to interaction
of the incident wave with immobilized strips, whereas the radiation problem pertains to
wave generation in the surrounding elastic medium due to rigid body motion of the strips.
It is clear that both the diffraction and radiation problems are defined by eqn (4). Now if
the displacement components of the diffracted and radiated fields are denoted as (u,,v,)
and (u.. v.), respectively, then the boundary conditionson v = 0. |x| < | are
U, =0, V= —V = —C"'k" (9)
, =0, v.=A+x0, (10
where A and ¢ arc the (unknown) rigid body translation and rotation, respectively, of the
basic strip. The first of conditions (9) and (10), it is noted, has been satisfied already by

condition (3). The sccond of conditions (9) and (10) is handled most simply by 4 decompo-
sition into symmctric and antisymmetric components.

SYMMETRIC CASE

For the symmetric case v (=s) =v,(s) and [p,(—9)] = {p,(s)]. j=1,2. Putting
[p, ()] = 1/22f,/0s and

L) = sf,(D+/1—579,(5) (11)

into (4), and integrating by parts, leads to
t S

—4v,(x) = [/n:J. \/l —57g, () /w+ L(s, x)] ds
~1

1
+/}(l)[i/2j P(lw]) d.s'—-Q(-l‘):i lel <1, (12)

where 7 = (1 +x)/2x, k = (A+2u)/p, and
L(s.x) = in/2k; sgn wN(lw])+7 sgn whL(|w]), (13)
N(wl) = H\ "k plwl) = (krlw]) = S R bl + (h plwl) = Ho (kg |w]) + 24 (ke pwl) ',
(14)
P(Iw)) = H (krlwl) = (krlw]) - l”'u”(’\‘rl“'l)+(\/';kr|"'|)' VAR (g ). (13)
O(x) = (hki)~ 'i[(%./C..z.)z(c';"“”"’+€_"""”“’)—(e""'““’+e—s‘.r("")]. (16)

SAS 25 %a0
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M(jwl) = (hk7) '3 [25 ¢ = =l e ™), (17)
{

and sgn w = + (= 1) if w > 0(<0). The quantities f,(1). y = 1.2 are proportional to the
resultant (vertical) forces F, acting on the basic strip. i.e.

1
F = ;LJ [p()] ds = pf (D). (18)
-1
In addition, the left hand side of (12) is

) —cos kpx, j=1 )
v,(x) = [ A = |x] < 1. (19

The unknown A is determined by letting vi(x) = v.(x)/A and solving (12) with
vi(x) = 1. This gives g2(s) = ¢g:(s)/A. f5(1) = f2(1):A, and Fy = F,/A. Then, using the
dynamic (force) equilibrium condition, gives

A= —F i(Fy4+pumki), (20)
where o= 2p*/p.

The solution of (12) may be obtained by the Gauss Chebyshev numerical technique

(sce e.g. Erdogan and Gupta, 1972). According to this technique equation (12) 1s replaced
by the discrete system

N
=4y, = N+ DY (1 =5)g,,G/w, +L,)
I

=8, ~X,, W,=3—x, clc, x,=cos[n2p—1)2(N+1)]. and

where v, =v(y), w,=35 —x,

s, = cos my/(N+1).
ANTISYMMLETRIC CASE
For the antisymmetric case v,(—s) = —v (s)and [p,( =s)] = —[p,(s)].j = 1,2. Using
the same notation as in the symmetric case, (11) is replaced by
£5) = LA+ 1= 579,050, (22)
so that (12) becomes

—4v,(x) = l/nj V/r—:‘j\':‘g,(.s')[*,'/w+L(.s’. x)] ds
1

l
+f,(l)[i/2f P{w]) sgn s d.\'——R(.\‘)] lxj <1, (23)
|
where

R(xy = (hk3) " Y [0/ G ) e et e S tEr ) 20 2l sgn )
]

—(C artl SO e ari! H)+2 Cw;,»m sgn t‘)] (24)
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Here the left hand side is

isinkrpx, j=1
v,(x) = [.\’9. j=2 lxj < L. (25

As in the symmetric case the rotation 8 is obtained by solving equation (23) with § = 1 and
using the dynamic (moment) equilibrium equation. Thus. with the notationg: J(5) = 69 (s).
f-(1) =8f5(1). and T, = 6T, there follows

0 = — T, /(T2 +upki). (26)

where p = I/p and [ is the (mass) moment of inertia of the strip. (Here / = 3p*.) Combining
the basic definition of torque

i
=p J [p,(9]s ds. 27
—t

with equation (22) yields

‘ it o
T, = ;4/2[ (1)~ j J1=529,(5) d.v]. (28)
-1

The sceond term is evaluated by the quadrature formula

N

t
: 3 s K}
J ' \/l —57gs) dv x N4l ; (1 =539 ,00 (29)

where ¢, is the sotution of the discretized form of equation (23). For the antisymmetric
case the discretized equations are:

N
~av,, = YN+ 1Y (1 =5)g,,[7/we+ Ll
H

1
+f,(l)[i/2j P(lw,}) sgn s ds«—R,} p=12,... . N+1 (3O
-1
where R, = R(x,) is given by (24), and all other terms are as previously defined.

RESULTS AND DISCUSSION

Equations {21) and (30) were solved for the case k = 3 (Poisson’s ratio v = 1/4). A
vitlue of N = 20 was found to give stable results over the entire frequency range considered.
Figures 2-6 depict the displacement |A| as a function of wavenumber &, for various
spacings i and mass ratios m. (Note thut since the unit of length is the strip half-width, &,
is really a normalized wavenumber.) As seen, an increasc in mass ratio causes a decrease
in strip displacement. An increase in strip spacing, however, tends to magnify the dis-
placement at certain (“resonant”™) wavenumbers. Note that the locations of the “resonant™
peaks are practically independent of m, whereas the magnitudes of the “‘resonant™ peaks
are not. In addition to the results shown, some computations were made with 4 = 10. These
latter results differed only slightly from those with ## = 5. It is expected, therefore, that the
case i = 5 represents fairly closcly the case of a single strip (A = ).

It is of interest to compare the “resonant” wavenumbers with those corresponding to
a column of identical material 2 units in width by 24 units in height, and with a strip mass
at its midpoint. The natural wavenumbers for longitudinal vibrations of the column are
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lal

Fig. 2. Displacement vs normalized wavenumber o = 0.5,

jal

Fig. 3. Displacement vs normadized wavenumber: 4t = 1.0,

given by
tan K h = —mk,, 31

where, as previously defined, &, = /cr/\/;c and m = 2p*/p. With h = 5, x =3, and n = 0.2,
the first three roots of (31) are found to agree to within 2% on the average with those of
Fig. 4. The agreement is not as good, however, at the higher mass ratios: differences of
about 10% and 20%. respectively, are obtained for m = 1.0 and m = 5.0. Apparently, a
less localized interaction occurs as the mass ratio increases. We note that the results depicted
in Figs 2 and 3 arc similar to those depicted in Figs 5 and 6 of Mcade and Keer. The
“resonant” effect, however, does not occur in the case considered by Meade and Keer.
The rotational response of the strips is shown in Figs 7 and 8. In these figures the
parameter p is proportional to the mass ratio m, i.e. p = [jp = 2m/3. It is seen that the
effect of spacing on the rotational response is appreciable only when the strips are relatively
dense. It is of interest to compare the effects of the spacing and mass parameters on the
rotational and translational responses, especially the “resonant™ responses. From Figs 2-
6 it is seen that a “‘resonant” displacement occurs only when the spacing is large, irres-
pective of the strip mass. By contrast, Figs 7 and 8 reveal that a “‘resonant” rotation
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occurs only when the mass ratio is large, irrespective of the spacing. That is, the effects of
the mass and spacing parameters on the “resonant” rotation and “resonant’ displacement
are reversed.
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